DIAGNOSTIC METHODS IN HADROTHERAPY

Fabio Sauli TERA Foundation and CERN

PART 3 IN-BEAM POSITRON EMISSION TOMOGRAPHY

CONVENTIONAL PET

- Positron emitting tracers injected
- Detection of the pair of co-linear 511 keV photons emitted by a positron annihilation
- Computer reconstruction and imaging

Common β^+ emitting radioisotopes:

Isotope	Half life (min)	Range (mm)
¹¹ C	20.4	1.7
^{13}N	10.0	2.0
¹⁵ O	2.0	2.7
¹⁸ F	109.8	1.4

Most common molecular tracer: Fluorodeoxyglucose FDG (contains ¹⁸F positron emitter)

- Lifetime 110 min
- Typical activity 200-400 MBq

EXAMPLES OF CONVENTIONAL PET IMAGES

PROTON BEAM: β^+ EMITTING ISOTOPES PRODUCTION

Nuclear Reactions	Threshold Energy (MeV)	Half-life Time (min)	Positron Max. Energy (MeV)
16O (p. pn) 15O	16.79	2.037	1.72
16O (p, 2p2n) 13N 10	5.66 ()	9.965	1.19
14N (p. pn) 15N	11.44	9.965	1.19
12C (p, pn) 12C	20.61	20.39	0.96
14N (p. 2p2n) 13C 10	3.22 0	20.39	0.96
16O (p, 3p3n) 11C 10	27.50 ()	20.39	0.96
 (p.2p2n) is inclusive of (p.) (p. 3p3n) is inclusive of (p.) The listed thresholds refer 	, α) , α pa) to (p, α) and (p,	a pa)	

(p, pn) CROSS SECTIONS:

ACTIVATION VS DOSE (140 MeV p):

CARBON BEAM: β^+ EMITTING ISOTOPES PRODUCTION

NEAR-BEAM PET

- Commercial PET scanners
- Lower activity and wash-out

K. Parodi et al, Nucl. Instr. and Meth. A591(2008)282

IN-BEAM PET

Not possible during therapy (background radiation)

- After treatment
- Gated operation: 1 s spill 3 s extraction

GSI DARMSTADT:

W. Enghardt et al, Nucl. Instr. and Meth. A525 (2004) 284

IN-BEAM PET: DETECTOR GEOMETRY

- Reduced efficiency
- Artefacts
- Background radiation?

INCLINED RING

DUAL RINGS

P. Crespo, G. Shakirin and W. Enghardt, Phys. Med. Biol. 51(2006)2143

IN-BEAM PET PROBLEMS

DUAL HEAD ARTIFACTS

P. A. Crespo, PhD Thesis (Darmstadt Univ. 2005)

DEPTH OF INTERACTION PARALLAX ERROR

TERA

RESTRICTED REGION OF INTEREST: TIME OF FLIGHT

TIME OF FLIGHT PET SIMULATIONS

P. Crespo et al., Phys. Med. Biol. 52 (2007) 6795

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

IN-BEAM PET TOOLS

- HIGH ENERGY PHOTONS DETECTION
- HIGH-Z CRYSTAL SCINTILLATORS
- SENSORS: PHOTOMULTIPLIERS, SOLID STATE

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

PHOTON DETECTION: ENERGY DEPENDENCE

CONVERSION PROCESSES: Photoelectric $E_{K} - E_{L}$ $E_{g} - E_{K}$ Compton scattering Egn Q_{C} Q_e E_{e} Pair production

A. Thompson et al, X-RAY DATA BOOKLET (2001)

http://xdb.lbl.gov/
http://henke.lbl.gov/optical_constants/

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

INORGANIC SCINTILLATORS

	NaI	BGO	LSO:Ce	LYSO:Ce	LuAP:Ce	
Density (g/cm ³)	3.67	7.13	7.40	7.1	8.34	
Photofraction	0.17	0.35	0.32		0.30	
Decay time (ns)	230	300	35-45	41	17	
Light output (photons/MeV)	43000	8200	27000	32000	11400	
Peak emission (nm)	415	480	420	420	365	
Refraction index	1.85	2.15	1.82	1.97	1.97	

P. Lecoq et al, Inorganic Scintillators for Detector Systems (Springer 2006) F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

BEST SCINTILLATOR: SODIUM IODIDE

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

INORGANIC SCINTILLATORS FOR HEP CALORIMETRY

HIGH-Z CRYSTAL SCINTILLATORS LEAD TUNGSTATE (PbWO₄)

CMS ELECTROMAGNETIC CALORIMETER

LYSO

- Density: 7.1 g/cm³
- Attenuation length at 511 keV: 1.2 cm
- Emission peak: 420 nm
- Light yield: 32 photons/keV
- Decay time: 40 ns

Radioactivity (from 2.6% ¹⁷⁶Lu)

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

PHOTON SENSORS

VACUUM PHOTODIODES

No gain

PHOTOMULTIPLIERS High gain (> 10⁵)

PHOTOCATHODE

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

PLANAR MULTIANODE PHOTOMULTIPLIERS

MICROCHANNEL PLATE MULTIPLIER (MCP)

MULTIPLE CHANNELS: Microchannel Output electrons 1st Draw Assemble Channel Fibre Core. Glass Input radiation 2nd Draw Fiber 2nd Stack 1st Stack (Boule) Polish, Etch, Reduce in Hydrogen Nickel-chromium electrode Wafer Deposit Electrodes MCP

MCP MANUFACTURING:

SINGLE CHANNEL:

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

MULTIANODE PHOTOMULTIPLIERS WITH MICROCHANNEL PLATE AMPLIFIER

DEPTH OF INTERACTION DETERMINATION

SILICON PHOTOMULTIPLIER/MULTI-PIXEL PHOTON COUNTER

Light sensors: Silicon Photomultiplier (SiPM, MPPC) Multi-cell Geiger mode:

- High QE (70%)
- High gain $\sim 10^6$
- Single photon counting linear response

INTRINSIC TIME RESOLUTION VS NUMBER OF PHOTOELECTRONS (PULSED LASER SOURCE):

G. Collazuol et al, Nucl. Instr. and Meth. A581(2007)471

SILICON PHOTOMULTIPLIER PERFORMANCES

FAST SMALL SIZESCINTILLATORS LSO:Ce-Ca 4x4x5 mm²

ENERGY RESOLUTION ON ²²Na (511 keV)

M.C. Bisogni et al, Subm. Nucl. Instr. and Meth. (2010)

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

40

20

ø

INTEGRATED SCINTILLATOR+SiPM

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

STATISTICAL LIMIT ON TIME RESOLUTION

P. Lecoq, ENVISION Meeting (CERN 3.2.2010)

PHOTONS DETECTION WITH GASEOUS COUNTERS

ABSORPTION LENGTH FOR GASES AT NTP:

HARD X-RAYS: CONVERTERS AND DETECTION IN GASES

HIGH DENSITY AVALANCHE CHAMBER (HIDAC) 1980-90

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

TIME RESOLUTION OF GASEOUS DETECTORS

WIRE PROPORTIONAL COUNTERS AND CHAMBERS:

Average distance between ion pairs (MIPS) $\sim 300 \ \mu m$ Drift velocity $\sim 5 \ cm/\mu s$ Avalanche amplification at wires Time resolution 5-10 ns

PARALLEL PLATE COUNTERS:

Avalanches start all through the gap Instant signal induction on electrodes Time resolution 1-2 ns for ~ mm gaps

WIDE GAP: GOOD EFFICIENCY NARROW GAP: GOOD TIME RESOLUTION

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

MULTIGAP RESISTIVE PLATE CHAMBERS

STACK OF INDEPENDENT NARROW GAP PPC HV AND GROUND ON EXTERNAL ELECTRODES FLOATING INTERNAL ELECTRODES COMMON EXTERNAL SIGNAL PICKUP

E. Cerron Zeballos et al, Nucl. Instr. and Meth. A 374(1996)132

ALICE TIME OF FLIGHT PARTICLE IDENTIFICATION

TOF RESOLUTION FOR PARTICLES: $\sigma = 55 \text{ ns}$

 $\sim 150 \text{ m}^2$ INSTALLED AND OPERATING

F. Sauli - Diagnostic Methods in Hadrontherapy - EPFL 18.11.2010

MULTIGAP RPC EFFICIENCY

MRPC SIMULATIONS (GEANT4)

EFFICIENCY VS GLASS THICKNESS (FWD+BKW):

0.25

TER/

3 - 33

MRPC SIMULATIONS (GEANT4)

GRAZING INCIDENCE PET DETECTOR DESIGN

