PART 2 PROBLEMS AND SOLUTIONS WITH GASEOUS COUNTERS

Fabio Sauli TERA 20-29, 2Foundation and CERN EDUT 2015 Laboratori Nasionali di Frascati, October 015

MULTIWIRE PROPORTIONAL CHAMBER (MWPC)

G. Charpak et al, Nucl. Instr. and Meth. 62(1968)262

TIME PROJETION CHAMBER (TPC)

TIME PROJETION CHAMBER (TPC)

RATE-DEPENDENT GAIN REDUCTION

SPACE CHARGE NEAR THE ANODE: BUILDUP OF SLOW POSITIVE IONS MODIFIES THE ELECTRIC FIELD

RELATIVE GAIN AS A FUNCTION OF RATE:

POSITIVE ION BACKFLOW

LATERAL DISPLACEMENT OF ELECTRONS DRIFTING NEAR A POSITIVE IONS COLUMN

POSITIVE ION BACKFLOW

SLOW POSITIVE IONS ACCUMULATE IN THE DRIFT VOLUME AND MODIFY THE FIELD RESULTING IN TRACKS DISTORTIONS:

PERCENTAGE DRIFT FIELD MODIFICATION (ALEPH MWPC-TPC)

0.4

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

ions field variation

SECONDARY PROCESSES

PHOTONS FEEDBACK: AVALANCHE SPREAD

IONS FEEDBACK: CATHODE DAMAGE, AGING,

TRANSITION FROM PROPORTIONAL TO STREAMER

THE RAETHER LIMIT

Maximum avalanche size before transition or breakdown: Q_{MAX} =(Primary ionization)x(Gain) ~ 10⁷ e

Spark damages in MWPCs:

Fabio's Museum of Horrors

AGING

Polymerization of organic compounds with formation of deposits on thin wires:

O. Ullaland, LBL-21170 (1986)107

I. Juric and J. Kadyk, LBL-21170 (1986)141

I. Juric and J. Kadyk, LBL-21170 (1986)141

M. Binkley et al, Nucl. Instr. and Meth. A515(2003)53

MICRO-STRIP GAS COUNTER

Anton Oed, 1988

A. Oed, Nucl. Instr. and Meth. A263(1988)351

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

 $10 \mu m$ wide anode strips, $50 \mu m$ cathode strips at $100 \mu m$ pitch on glass substrate:

AGING

R. Bouclier et al, Nucl. Instr. and Meth. A367(1995)163

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

RATE CAPABILITY

Rate capability: 1 MHz/mm²

MSGC AGING

MSGC GAIN vs COLLECTED CHARGE

R. Boucler et al, Nucl. Instr. and Meth. A348(1994)109

MSGC DISCHARGES

DISCHARGES IN MICROSTRIP CHAMBERS

Pre-amplification of electrons emitted by cathode strip edges

Fabio's Museum of Horrors

MICROMEGAS

HIGH/LOW FIELD REGIONS SEPARATED BY A MESH

Signal distribution: 200 µm fwhm

J. Derré et al, Nucl. Instr. and Meth. A459(2001)523

Y. Giomataris et al, Nucl. Instr. and Meth. A 376(1996)29

GAS ELECTRON MULTIPLIER (GEM)

Thin (50 μ m) metal-coated polymer foil with high density of holes:

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

FAST ELECTRON SIGNAL ONLY ON ANODE STRIPS

GEM TWO-TRACK RESOLUTION

TWO-TRACK RESOLUTION (DRIFT TIME):

A. Bressan et al, Nucl. Instr. and Meth. A425(1999)262

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

TWO-TRACK RESOLUTION (PROJECTION):

GEM RATE CAPABILITY

GEM GAIN vs RATE (SOFT X-Rays)

GEM RATE CAPABILITY

A STRANGE OBSERVATION: GAIN INCREASE AT VERY HIGH RATES (2006, UNPUBLISHED)

Peter Everaerts, PhD Gent University (2006)

GEM RATE CAPABILITY

A RECENT SIMULATION

DISCHARGES: MICROMEGAS

MICROMEGAS: SPARK PROBABILITY IN HADRON BEAM

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

23

DISCHARGES: RESISTIVE MICROMEGAS

SPARK RATES IN NEUTRON BEAM EXPOSURE:

BUILT ON A HIGH-RESISTIVITY POLYMER

T. Alexopolous et al, Nucl. Instr. and Meth. A640(2011)110

DISCHARGES: RESISTIVE MICROMEGAS

GAIN REDUCTION AS A FUNCTION OF RATES:

J. Galán et al, Nucl. Instr. and Meth. A732(2013)229

DISCHARGES: MULTI-GEM

C. Büttner et al, Nucl. Instr. and Meth. A409(1998)79

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

DISCHARGES: MULTI-GEM

Nucl. Instr. and Meth. A479 (2002) 294

IN MULTI-GEMS, THE CHARGE SPREADS OVER MANY INDEPENDENT HOLES!

POSITIVE IONS BACKFLOW: MICROMEGAS

POSITIVE IONS BACKFLOW: MULTI-GEM

THE IBF VALUE RESULTS FROM THE INTERPLAY OF GEOMETRY, FIELDS, DIFFUSION:

A. Bondar et al, Nucl. Instr. and Meth. A496(2003)325

M. Killenberg et al, Nucl. Instr. and Meth. A530(2004)251

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

29

POSITIVE IONS BACKFLOW: GEM WITH OFFSET HOLES

F. Sauli et al, Nucl. Instr. and Meth. A560(2006)269

ALICE TPC GEM UPGRADE

BASELINE: FOUR OFFSET GEMs

B. Ketzer et al, Nucl. Instr. and Meth. A732(2013)237

ALICE TPC GEM UPGRADE

QUAD-GEM WITH ALTERNATING DIFFERENT PITCH IBF AND ENERGY RESOLUTION VS VOLTAGE ON THE FIRST GEM:

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

ALICE TPC GEM UPGRADE

SIMULATION STUDIES FOR PANDA: TRIPLE GEM OPERATED IN Ne-CO₂ 90-10 2 10⁷ p-p ANNIHILATIONS GAIN M=2000 IBF 2.5 10⁻³

RADIATION RESISTANCE: MICROMEGAS

SYSTEMATIC IRRADIATION OF SMALL PROTOTYPES:

Irradiation with	Charge Deposit (mC/cm ²)	HL-LHC Equivalent	Results
X-Ray	225	5 HL-LHC years equivalent	No evidence of ageing
Neutron	0.5	10 years HL-LHC years equivalent	No evidence of ageing
Gamma	14.84	10 years HL-LHC years equivalent	No evidence of ageing
Alpha	2.4	5 x 10 ⁸ sparks equivalent	No evidence of ageing

G. Iakovidis, MPGD 2013

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

RADIATION RESISTANCE: GEM

M. Alfonsi et al, Nucl. Instr. and Meth. A518(2004)106

Fabio Sauli – Photon Detection and Imaging with Gaseous Counters – EDIT 2015

AND IF YOU WANT TO KNOW MORE...

http://www.cambridge.org/F4GASEOUS

F. Sauli The gas electron multiplier (GEM): Operating principles and applications Nucl. Instr. and Meth. In Press (7 Aug. 2015)

THE END

THANKS FOR YOUR ATTENTION