EDIT 2011

Excellence in Detectors and Instrumentation Technologies CERN, Geneva, Switzerland - 31 January - 10 February 2011

GASEOUS DETECTORS FUNDAMENTS

Fabio Sauli TERA Foundation and CERN

ENERGY LOSS OF CHARGED PARTICLES IN GASES

MAIN PARAMETERS:

Gas	$\frac{\rm Density,}{\rm mgcm^{-3}}$	$E_x \\ eV$	E_I eV	${W_I \over { m eV}}$	$\frac{dE/dx}{\mathrm{keV}\mathrm{cm}^{-1}}$	${N_P \over { m cm}^{-1}}$	${m_{T} \atop {\rm cm}^{-1}}$
Ne	0.839	16.7	21.6	30	1.45	13	50
Ar	1.66	11.6	15.7	25	2.53	25	106
Xe	5.495	8.4	12.1	22	6.87	41	312
CH ₄	0.667	8.8	12.6	30	1.61	37	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6.5	10.6	26	5.67	90	220
CO ₂	1.84	7.0	13.8	34	3.35	35	100
CF4	3.78	10.0	16.0	54	6.38	63	120

PRIMARY IONIZATION:

TOTAL IONIZATION:

REVIEW OF PARTICLE PROPERTIES

http://pdg.lbl.gov/

Fabio Sauli EDIT 2011

PRIMARY INTERACTIONS AND CLUSTERS

PROGRAM HEED: NUMBER OF PRIMARY INTERACTIONS (CLUSTERS) IN GASES AT STP

H. Fischle et al, Nucl. Instr. and Meth. A301 (1991) 202

EXPERIMENTAL CLUSTER SIZE

PROBABILITY FOR AN ELECTRON OF ENERGY > E:

F. Lapique and F. Piuz, Nucl. instr. and Meth. 175(1980)297

I. B. Smirnov, Nucl. Instr. and Meth. A554(2005)474

CONSEQUENCED OF DELTA ELECTRONS

LANDAU DISTRIBUTION OF ENERGY LOSS: POOR RESOLUTION

For a Gaussian distribution:

 $\sigma_N \sim 21$ i.p. FWHM ~ 50 i.p.

DETECTION OF PHOTONS

http://xdb.lbl.gov/ http://henke.lbl.gov/optical_constants/ http://physics.nist.gov/PhysRefData/FFast/html/form.html

DETECTION OF PHOTONS

ABSORPTION LENGTH (STP) VS PHOTON ENERGY

SOFT X-RAYS: FLUORESCENCE YIELD

Fluorescence photons can convert far from the primary interaction, or escape from the sensitive volume (escape peak):

X-RAY ABSORPTION SPECTRUM ⁵⁵Fe X-Rays (5.9 keV) in Argon:

DRIFT AND DIFFUSION OF CHARGES IN GASES

E = 0 : THERMAL DIFFUSION (Ions and electrons):

Maxwell energy distribution:

E > 0: CHARGE TRANSPORT AND DIFFUSION

ELECTRONS DRIFT VELOCITY

DRIFT VELOCITY:

A. Peisert and F. Sauli, drift and Diffusion of Electrons in Gases: a compilation CERN 84-08 (1984)

MAGBOLTZ

ELECTRON-MOLECULE CROSS SECTION

Charge transport processes are determined by the various electron-molecule cross sections:

ELECTRONS ENERGY

ENERGY DISTRIBUTION AT INCREASING FIELDS:

EQUAL FIELD, DIFFERENT GAS:

SAME GAS, INCREASING FIELD:

ELECTRONS DRIFT AND DIFFUSION

ELECTRON CAPTURE

ATTACHMENT CROSS SECTION OF OXYGEN:

Fabio Sauli EDIT 2011

HIGH FIELD-INELASTIC COLLISIONS

ELECTRON CROSS SECTIONS IN ARGON:

Fabio Sauli EDIT 2011

14

HIGH FIELD-INELASTIC COLLISIONS

MAIN ELECTRON-MOLECULE INELASTIC PROCESSES:

1)	A+e	⇒	A++e+e	Ionisation by electronic impact.
2)	A+e	⇒	A*+e	Excitation by electronic impact.
3)	A*+e	\Rightarrow	A+e	Deexcitation by electronic collision.
4)	A+hv	\Rightarrow	A*	Photo-excitation (absorption of light).
5)	A*	⇒	A+hv	Photo-emission (radiative deexcitation).
6)	A+hv	\Rightarrow	A++e	Photoionisation.
7)	A++e	⇒	A+hv	Radiative recombination.
8)	A++B+e	\Rightarrow	A+B	Three body recombination.
9)	A*+B	\Rightarrow	A+B*	Collisional deexcitation.
10)	A*+B	\Rightarrow	A+B++e	Penning effect.
11)	A++B	\Rightarrow	A+B+	Charge exchange.
12)	A++B	\Rightarrow	A++B++e	Ionisation by ionic impact.
13)	A+B	\Rightarrow	A*+B	Excitation by atomic impact.
14)	A+B	\Rightarrow	A++B+e	lonisation by atomic impact.
15)	A+e	\Rightarrow	A-	Formation of negative ions.
16)	A-	\Rightarrow	A+e	Electrons release by negative ions.
17)	A**+A	⇒	A ₂ ⁺ +e	Associative ionisation.
18)	A++2A	\Rightarrow	A ₂ ⁺ +A	Molecular ion formation.
19)	A*+A+A	⇒	A2+A	Excimer formation.
20)	A ₂	⇒	A+A+hv	Radiative excimer dissociation.
21)	(XY)*	⇒	X+Y*	Dissociation.
22)	(XY)++e	\Rightarrow	X+Y*	Recombinational dissociation

J.Meek and J. D. Cragg, Electrical Breakdown of Gases (Clarendon Press, Oxford 1953)

APPROXIMATE SHARING BETWEEN COLLISION PROCESSES:

CHARGE MULTIPLICATION

Mean free path for ionization:

$$\lambda = \frac{1}{N\sigma}$$
 N: molecules/cm³

Townsend coefficient:

S.C. Brown, Basic Data of Plasma Physics (MIT Press, 1959)

Fabio Sauli EDIT 2011

CHARGE MULTIPLICATION IN UNIFORM FIELD

Incremental increase of the number of electrons in the avalanche:

 $dn = n \alpha dx$

Multiplication factor or Gain $M(x) = \frac{n}{n_0} = e^{\alpha x}$

Maximum Avalanche size before discharge (Raether limit):

 $Q_{MAX} \approx 10^7 \text{ e}$

H. Raether, Electron Avalanches and Breakdown in Gases (Butterworth 1964)

TOWNSEND COEFFICIENT

TOWNSEND COEFFICIENT FOR Ar-CH₄: (MAGBOLTZ)

IONIZATION CHAMBER: SIGNAL DEVELOPMENT BY A MOVING CHARGE +Q

Charge induced on each electrode by +Q moving through the difference of potential dV:

$$dq = Q\frac{dV}{V_0} = Q\frac{ds}{s_0}$$

Integrating over s (or time t):

$$q(s) = \frac{Q}{s_0}s \qquad q(t) = \frac{Q}{s_0}wt \qquad i(t) = \frac{dq}{dt} = \frac{Q}{s_0}w$$

Electrons- ion pair (-Q and +Q) released at the same distance s from the cathode :

$$q(t) = Q\left(\frac{w^{-}t}{s_0} + \frac{w^{+}t}{s_0}\right) \quad 0 \le t \le T^{-}$$
$$q(t) = Q\left(\frac{s - s_0}{s_0} + \frac{w^{+}t}{s_0}\right) \quad T^{-} \le t \le T^{+}$$

 $w^{-}(w^{+})$: electron (ion) drift velocity $T^{-}(T^{+})$: total electron (ion) drift time (+Q on cathode, -Q on anode)

Fabio Sauli EDIT 2011

CHARGE INDUCTION - AVALANCHE MULTIPLICATION

PARALLEL PLATE COUNTERS: SIGNAL DEVELOPMENT WITH CHARGE MULTIPLICATION

Fabio Sauli EDIT 2011

PROPORTIONAL COUNTER

THIN ANODE WIRE

PROPORTIONAL COUNTER

S. C. Curran and J. D. Craggs, Counting Tubes (Butterworth 1949) F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers (CERN 77-09)

MULTIWIRE PROPRTIONAL CHAMBER

G. Charpak et al, Nucl. Instr. and Meth. 62(1968)235

Fabio Sauli EDIT 2011

G. Charpak and F. Sauli, Nucl. Instr. and Methods 113(1973)381

DRIFT CHAMBER

A. H. Walenta, J. Heintze and B. Scürlein, Nucl. Instr. and Meth. 92(1971)373

TIME PROJETION CHAMBER

Fabio Sauli EDIT 2011

THE END

END OF THE LECTURES ...

... BUT NOT OF THE FUN!

Fabio Sauli EDIT 2011