

1988: MICRO-STRIP GAS COUNTER (MSGC)

THIN METAL STRIPS ON GLASS SUBSTRATE

A. Oed, Nucl. Instr. and Meth. A263(1988)351

LIGHT AND COMPACT DETECTOR CONSTRUCTION

J. Bohm et al, Nucl. Instr. and Meth. A360(1995)34

HERA-B MSGC INNER TRACKER ~ 200 MSGC 20x20 mm² CMS CENTRAL TRACKER ~ 5500 MSGC

MSGC: DISCHARGE PROBLEMS

MILD OR SERIOUS DISCHARGE PROBLEMS!

HERA-B MSGC INNER TRACKER

S. Keller et al, Nucl. Instr. and Meth. A419(1998)382

~ 1990 TO PRESENT: NEW DEVELOPMENTS

G. Charpak and F. Sauli, Phys. Lett. 78B(1978)723

~ 1995 : µVIAS DEVELOPMENT

POLYIMIDE ETCHING: CONTACTS THROUGH FLEXIBLE PRINTED CIRCUITS Angelo Gandi and Rui De Oliveira CERN's Printed Circuit Workshop (EST-DEM)

1996: MSC+µVIAS => GEM

THE GAS ELECTRON MULTIPLIER (GEM): 100 µm PITCH HOLES ON COPPER-CLAD POLYIMIDE FOIL

PRESENTED AT: IEEE Nuclear Science Symposium & Medical Imaging Conference Anaheim, CA November 3-9, 1996

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

GEM MANUFACTURING

"STANDARD" GEM

TWO-STEP DETECTOR

MSGC WITH GEM PREAMPLIFIER

R. Bouclier et al, Nucl. Instr. and Meth. A396(1997)50

HERA-B MSGC+GEM

CERN's Printed Circuit Workshop (EST-DEM)

Bagaturia et al, Nucl. Instr. and Meth. A490(2002)223

MPGD DISCHARGE STUDIES

GASEOUS α SOURCE: ²³²Th -> ²³²Rn+ α (6.4 MeV) $\Delta E \sim 500 \text{ keV} \sim 10^4 \text{ e I}^+$

A. Bressan et al.Nucl. Instr. and Meth. A424(1999)321

10

MULTI-GEM STRUCTURES

DOUBLE GEM

- HIGHER GAINS
- REDUCED ION BACKFLOW
- LOWER DISCHARGE PROBABILITY

S. Bachmann et al, Nucl. Instr. and Meth. A 443(1999)464

DISCHARGE STUDIES - ALICE GEM TPC

²²⁰Rn INTERNAL α SOURCE

TRIPLE GEM

P. Gasik RD51Coll. Meeting (CERN 2016)

BACK TO MULTIGEM DISCHARGES

IN MULTI-GEMs, THE CHARGE SPREADS **BY DIFFUSION OVER MANY HOLES!**

4-GEM SIMULATION (ALICE TPC)

VERY LARGE GAINS OBSERVED IN PURE NOBLE GASES CHARGE CONFINEMENT: HOLES ARE (QUASI) INDEPENDENT

A. Buzulutskov et al, Nucl. Instr. and Meth. A433(1999)471

P. Bhattacharya, MPGD Workshop (Trieste 2015)

HYBRID DETECTORS

DISCHARGE STUDIES - ALICE GEM TPC

DISCHARGE PROPAGATION: LAST GEM TO ANODE

P. Gasik RD51Coll. Meeting (CERN 2016)

2-DIMENSIONAL CARTESIAN STRIPS READOUT

6 keV RADIOGRAPHY

- FAST ELECTRON SIGNAL
- READOUT PLANE AT GROUND POTENTIAL
- PATTERNED AT WILL

A. Bressan et al, Nucl. Instr. and Meth. A425(1999)254

MAIN GEM PERFORMANCES: MIPS

TRIPLE GEMs FOR COMPASS TRACKER

${\sim}30~TRIPLE~GEM~30x30~cm^2~$ - 2D CARTESIAN READOUT

HV TESTING DURING ASSEMBLY

C. Altumbas et al, Nucl. Instr. and Meth. A490(2002)177

GEM SECTORS AND READOUT PATTERNS

GEM SECTORS SEPARATION (200 µm)

1x1 mm² PIXELS AND STRIPS

M. Krämer et al, 2008 IEEE Nucl. Sci. Symp. Conf. Rec.

CENTRAL BEAM KILLER

MEASURED FLUX IN HADRON BEAM:

TOTEM TRIPLE GEM FORWARD CMS TRACKER

SEMI-CIRCULAR MODULES

TEN-GEM TOTEM FORWARD SECTOR

M.G. Bagliesi et al, Nucl. Instr. and Meth. A617(2010)134

CYLINDRICAL GEMS

GAS DETECTORS DEVELOPMENT CERN L. Ropelewski....M. Van Stenis.....

TRIPLE-GEM PROTOTYPE

CYLINDRICAL GEM DETECTORS

KLOE-2 INNER TRACKER

BES III DETECTOR at IHEP (Beijing)

R. Farinelli, RD51 Coll. Meeting (Aveiro 2016)

A. Balla et al, Nucl. Instr. and Meth. A732(2013)221

CERN GDD: SPHERICAL GEM CHAMBERS

"SPHERICAL" MULTIGEM AND READOUT BOARD

S. Duarte Pinto arXiv:1011.5528v1 IEEE 2011 Nucl. Sci. Symp. Conf. Rec.

SINGLE MASK PHOTOLITOGRAPHY R. De Oliveira, CERN EP-DT-EF

Cu-clad Kapton	
Single mask Photoresist	
Cu etching	
Kapton etching	
Second Cu etching	

"CYLINDRICAL" HOLES

M. Alfonsi et al, Nucl. Instr. and Meth. A617(2010)151

CMS HIGH-η MUON DETECTOR UPGRADE

Archana Sharma, CMS GEM Upgrade Project Manager

DISMOUNTABLE MECHANICAL ASSEMBLY EDGE STRETCHED GEM FOILS CERN-INFN-BONN

GEM MODULES: 100-120 cm x 22-45 cm 36 SUPERCHAMBERS IN EACH ENDCAP

D. Abbaneo et al, Nucl. Instr. and Meth. A732 (2013) 203 B. Dorney, MPGD WORKSHOP (Trieste 2015)

CMS HIGH-η MUON DETECTOR UPGRADE

LARGE PROTOTYPE IN TET BEAM

ALICE GEM-TPC UPGRADE

Chilo Garabatos, Deputy Project Leader

QUAD-GEM WITH STAGGERED HOLES

A. Deisting, MPGD Workshop (Trieste 2015)

87 cm

ALTERNATIVE GEM STRUCTURES

GLASS GEM

- GOOD GAIN UNIFORMITY
- GOOD ENERGY RESOLUTION
- NON-OUTGASSING MATERIALS

H, Takahashi et al, Nucl. Instr. and Meth. A724(2013)1

THICK ELECTRON MULTIPLIER (THGEM)

ALSO CALLED LARGE ELECTRON MULTIPLIER (LEM)

MECHANICAL DRILLING OF METAL-CLAD PC BOARD

- SELF-SUPPORTING
- HIGH GAIN (?)

R. Chechik et al, Nucl. Instr. and Meth. A535(2004)303

THGEM: GAIN AND CHARGING UP

time [hours]

MULTIPLE

STRUCTURES

GAIN VS X-RAY RATE: TRIPLE GEM (2006)

P. Everaerts, PhD Thesis Gent University (2006)

MULTIGEM GAIN AT VERY HIGH RATES

SIMULATION: CHARGE DENSITIES VS RATE

S. Franchino et al, IEEE 2015 Nucl. Sci. Symp. Conf. Rec.

Fabio Sauli CERN 21 October 2016 **20 YEARS OF GEM DETECTORS**

POSITIVE IONS BACKFLOW

A. Bondar et al, Nucl. Instr. and Meth. A496(2003)325

e⁻ I⁺ TRANSVERSE DIFFUSION:

EXPLOIT THE DIFFERENCE BETWEEN IONS' AND ELECTRONS' DIFFUSION IN AN OFFSET DOUBLE GEM

F. Sauli et al, Nucl. Instr. and Meth. A560(2006)269

ALICE

ALICE TPC GEM UPGRADE

FOUR GEMS WITH STAGGERED HOLES

A.Deisting, MPGD Workshop (Trieste 20125)

r (cm)

TRIPLE GEM OPERATED IN Ne-CO₂ 90-10 2 10⁷ p-p ANNIHILATIONS GAIN M=2000

SPACE CHARGE DENSITY:

IBF 2.5 10⁻³

ELECTRIC FIELD DISTORTIONS:

F.W. Bohmer et al, Nucl. Instr. and Meth. A719(2013)101

GAS DETECTORS SIMULATION TOOLS

MAGBOLTZ (Steve Biagi) GARFIELD (Rob Veenhof) + ELECTRIC FIELD, ENERGY LOSS,...

GAS DETECTORS SIMULATION TOOLS

ALICE GEM TPC SIMULATION

P. Bhattacharya, MPGD Workshop (Trieste 2015)

CASCADE: ¹⁰B-COATED GEM ELECTRODES

THERMAL NEUTRON RADIOGRAPHY

M. Klein and Ch. Schmidt, Nucl. Instr. and Meth. A628(2011)9

NEUTRON DETECTORS

b-GEM:

TRIPLE GEM WITH ALUMINUM FOIL CATHODE COATED WITH 1 μm OF BORON CARBIDE READOUT: 144 PADS, $8x8~mm^2$

SENSITIVITY TO GAMMA BACKGROUND:

2-D THERMAL NEUTRON BEAM PROFILE

G. Croci et al, Nucl. Instr. and Meth. A732(2013)217

NEUTRON DETECTORS

BORON ARRAY NEUTRON DETECTOR (BAND-GEM) **48 LAMELLAS PROTOTYPE** Alumina Lamellas coated on both sides with ${}^{10}B_4C$ **n**: 10 cm Cathode 3D 6 cm Lamella System 1 Estimated Efficiency Angle = 10 deg Measured Efficiency Angle = 10 deg Estimated Efficiency Angle = 7 deg 0.8 • - - Measured Efficiency Angle = 7 deg 2 mm Triple-Efficiency 0.6 **GEM** Padded Anode 0,4 0,2 G. Croci et al, MPGD Workshop (Trieste 2015) 0 2 10 12 0 6 8 Δ λ(A)

Fabio Sauli20 YEARS OF GEM DETECTORSCERN 21 October 2016

41

UV PHOTON DETECTION: CsI PHOTOCATHODES

REFLECTIVE CsI PHOTOCATHODE ON UPPER GEM ELECTRODE

- NO PHOTON FEEDBACK
- INSENSITIVE TO DIRECT IONIZATION

TRIPLE GEM COLLIMATED SINGLE UV PHOTON SOURCE POSITION ACCURACY

T. Meinschad, L. Ropelewski and F. Sauli, NIMA 535(2004)324

PHENIX HADRON BLIND DETECTOR

C. Aidala et al, Nucl. Instr. and Methods A502(2003)200

Z. Fraenkel et al, Nucl. Instr. and Methods A546(2005) 466

COMPASS RICH 1 UPGRADE

THICK GEM CsI-COATED 30x30 cm²

TRIPLE THGEM PROTOTYPE

SINGLE EVENT (6 GeV π - BEAM)

M. Alexeev et al, Nucl. Instr. and Meth. A732(2013)264

CHERENKOV RING IMAGING

COMPASS RICH-1 MPGD UPGRADE DOUBLE STAGGERED THGEMS+MICROMEGAS

M. Alexeev et al, MPGD Workshop (Trieste 2015)

GEM APPLICATIONS: POLARIMETRY

R. Bellazzini et al, Nucl. Instr. and Meth. A720(2013)173

Fabio Sauli CERN 21 October 2016 **20 YEARS OF GEM DETECTORS**

3

GEM POLARIMETER IN SPACE

GEMS MISSION CANCELLED BY NASA (2012)

NEW MISSION (2017): POLARIMETRY FOR RELATIVISTIC ASTROPHYSICAL X-RAY SOURCES (PRAXyS)

W.B. Iwakiri et al, Nucl. Instr. and Meth. In press (2016)

Toru Tamagawa, MPGD Workshop (Saragoza 2013)

GEMPIX: GEM + MEDIPIX

TRIPLE-GEM WITH MEDIPIX READOUT 256x256 pixels, $55x55 \ \mu m^2$

X (column number)

11.5

5.75

512

23

17.25

RECORDED EVENTS:

X-RAY FLUORESCENCE ANALYSIS

28x28 mm² MICRO-HOLE AND STRIP PLATE (MHSP) WITH RESISTIVE LINES 2-D READOUT

5 mm

ELEMENTAL ANALYSIS:

A.L.M. Silva et al, Spectrochimica Acta B86(2013)115

ENERGY-RESOLVED X-RAY FLUORESCENCE

J. Veloso, RD51 Special Workshop on Photon detection (CERN, 2015)

OPTICAL IMAGING

IMAGING CHAMBER (1987)

TRIETHYLAMINE (TEA): INTERNAL WAVELENGTH SHIFTER

G. Charpak, J.-P. Fabre, F. Sauli and M. Suzuki, Nucl. Instr. and Meth. A258(1987)177

OPTICAL IMAGING (2002)

CARBON TETRAFLUORIDE SCINTILLATION: 200 150 Light intensity (a.u.) 100 50 α PARTICLES TRACKS 0 600 700 400 500 800 wavelength (nm) n INTERACTIONS IN ³He He-CF₄ GAS FILLING Aluminium window 22.4 mm Glass window 50 mm F.A.F. Fraga, et al, Nucl. Instr. and Meth. A478(2002) 357

DOSE MONITORING IN HADROTHERAPY

DOUBLE GEM WITH OPTICAL DETECTION

E. Seravalli et al, Phys. Med. Biol. 53(2008)4651

Phenix Medical OptiGEM Dose Imaging Detector User Manual

OPTICAL IMAGING

α PARTICLES FROM ^{220}Rn and ^{216}Po

ENERGY RESOLVED FLUORESCENCE ANALYSIS

OPTICAL X-RAY IMAGING

SMALL DRONE-IN-THE BOX

JUMPING DRONE RADIOGRAPHY (30 keV)

F. Resnati, MPGD Workshop (Aveiro, 2016)

X-RAY TOMOGRAPHY

IMAGE -> SINOGRAMS -> FILTERED BACK PROJECTION -> 3D IMAGE

F. Resnati, MPGD Workshop (Aveiro, 2016)

CORRECTION OF THE PARALLAX ERROR

CAD-CAM DESIGN 3-D PRINTING OF MOST PARTS SEGMENTED GEMS MANUFACTURED AT CERN (R. De Oliveira)

10 cm Ø 10 cm FOCUS (ADJUSTABLE)

... F. Brunbauer.....M. Van Stenis.....

PLANISPHERICAL GEM

PLANISPHERICAL GEM

FLUORESCENCE IMAGE OF A COPPER MESH 1mm STRIPS AT 5 mm PITCH

AND IF YOU WISH TO KNOW MORE.....

Naclear Instituments and Methods in Physics Research A 805 (2016) 2-24

